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Abstract 

The moderate genetic diversity of cultivated sunflower, along with a changing environment, make sunflowers subject to the 

attack of many pests and diseases, with great economic impact. In Argentina, fungi and oomycetes produce four of the most 

challenging diseases: Sunflower Verticillium Wilt, Phomopsis Stem Canker, Sclerotinia Head Rot and Sunflower Downy Mildew. 

Efficient crop management to reduce the impact of pathogens requires resistant hybrids, recommendations for agricultural 

practices, and epidemiological monitoring to aid decision-making. However, each pathosystem has its own caveats. The 

integration of genotypic and phenotypic knowledge of sunflower breeding resources with the characterization of pathogens is 

critical to effectively assisting breeders in improving plant resistance and reducing yield losses. Below, we provide an overview 

of the latest scientific knowledge on each pathosystem and the strategies being pursued for breeding disease-resistant hybrids. 
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INTRODUCTION 

Fungal diseases 

Sunflower Verticillium Wilt 

Sunflower Verticillium wilt and leaf mottle (SVW) is a monocyclic vascular disease whose causal 

agent is the soil-borne fungal pathogen V. dahliae (Kleb.) (Vd). Vd is a polyphagous pathogen that 

infects more than 350 dicotyledonous host plants, making it difficult to control through common 

agricultural practices. The fungal inoculum consists of long-lived microsclerotia that remain infectious 

in the soil for 10 to 15 years (Pereyra and Escande ,1994). According to Creus et al., (2007) and 

Quiroz et al. (2012), susceptible commercial sunflower hybrids can experience yield reductions of as 

much as 30% due to SWD and susceptible material can experience yield losses of up to 73% (Pereyra 

et al. 1999). SVW occurs in most sunflower-growing regions of the world (Gulya et al. 1997). In the 

past, it has had a major impact in Argentina and on extensive regions in Canada, and the USA, where 

new pathogenic races have emerged (Harveson and Markell, 2016; Gulya, 2007; Pereyra and Escande, 

1994). In addition, it has recently become a serious threat to European temperate sunflower-growing 

countries (Martín-Sanz et al., 2018; Mestries, 2017).  

In Argentina, Vd is an endemic pathogen with a variety of local races (Bertero de Romano and 

Vázquez, 1982; Clemente et al., 2017; Galella et al., 2004). Vd inoculum is spread over 1.2 million 

hectares, covering more than 70% of the country’s sunflower-growing areas (Argentinian Sunflower 

Association, 2002). In the south of Buenos Aires province, the main production area in Argentina, 

SVW prevalence has averaged 45% (± 14%) over the last few years (ReTSaVe 2020). The density of 

microsclerotia in the soil in this growing area is an indicator of the severity of SVW (Rojo et al. 2008). 

In addition, Erreguerena (2013) found that low levels of organic matter (1.5-3%) and microbiota 

(bacteria, fungi, and actinomycetes) were associated with higher disease incidence and that there was a 

tendency towards higher disease incidence in sandier soils, probably related to low resistance to root 

exploration. Based on these results, Erreguerena et al. (2019) proposed a model that predicts disease 

risk before planting in each field.  

The populations of Vd show great variability (Berbegal et al., 2011). Vd has no known sexual stage 

and reproduces mitotically by conidia and persistent soilborne microsclerotia, having a distinctly 

clonal population structure (Bautista-Jalón et al., 2021; Collado-Romero et al., 2008; Dung et al., 

2013; Gurung et al., 2014; Jiménez-Gasco et al., 2014; Milgroom et al., 2014). However, mating-type 

idiomorphs have been described in the fungus (Usami et al., 2009). It has been hypothesized that 

sexual reproduction was lost from Vd recently and that current clonal lineages arose via previous 

ancestral recombination events (Atallah et al., 2010; Milgroom et al., 2014).  
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Before the availability of molecular markers, isolates of Vd were classified into vegetative 

compatibility groups (VCGs), which comprise isolates that can form stable heterokaryons (Jimenez-

Diaz et al., 2012; Jiménez-Gasco et al., 2014; Milgroom et al., 2014). Five main VCGs (VCG1 

through VCG4, plus VCG6) have been distinguished. Molecular genetic markers correlate almost 

perfectly with VCGs, with the major exception of VCG2B, which was subdivided into genetically 

distinct lineages 2B334 and 2B824 (Bautista-Jalón et al., 2021; Collado-Romero et al., 2008; Dung et 

al. 2013; Gurung et al. 2014; Jiménez-Gasco et al. 2014; Milgroom et al. 2014), and a recently 

discovered recombinant lineage, 2BR1 (Milgroom et al. 2014). Vd strains are also classified according 

to their pathogenicity in race 1 or race 2. The dominant locus V1 is the main source of resistance to 

race 1 worldwide (Fick and Zimmer, 1974; Fradin et al., 2009; Gulya, 2007; Kawchuk et al., 2001). 

This monogenic resistance source is conserved among species and has been described as a Pattern 

Recognition Receptor (PRR) (Fradin et al. 2011). However, race 2 strains evade this resistance 

(Bertero de Romano and Vázquez, 1982). Therefore, new Vd races were identified in sunflower 

according to the quantitative resistance response evoked in the plant.  

In Argentina, Galella et al. (2004) and Clemente et al. (2017) described the presence of four races of 

Vd infecting sunflower, designated VArg1 to VArg4. In agreement with Martín-Sanz et al. (2018), 

molecular PCR analyses characterized VArg1 and VArg2 as molecular race-2 due to the absence of 

the Ave1 effector present in the USA reference race (Short et al., 2014). This result is consistent with 

the different pathogenic behavior of local and foreign races observed in race-specific resistance tests in 

a subset of inbred lines under controlled conditions (Montecchia et al., 2017). Aguilera et al. (2023) 

studied the diversity and population structure of 17 isolates collected between 2001 and 2022 in the 

provinces of Buenos Aires and La Pampa, including races VArg1 and VArg2 and two races from 

France and the USA. To do this, these authors used genotyping by sequencing technique (Aguirre et 

al. 2019) to produce approximately 6,000 single nucleotide polymorphisms (SNP). A population 

structure analysis combining these results with SNP data from 34 sequenced Vd genomes from public 

sources confirmed a strongly clonal population structure. A subsequent combination of SNP from 

local and reference isolates with 168 isolates from different crops and geographical regions (Bautista-

Jalón et al., 2021) identified the same lineages previously described by VCGs. Interestingly, isolates 

from Argentina were grouped together with two isolates from France in a separate putative new 

lineage. The results obtained strengthen the characterization of Vd races affecting sunflowers in the 

region and favor the development of molecular diagnostic methods, epidemiological and surveillance 

studies, as well as the development of future breeding strategies for sunflowers for disease control.  

Consistent with the different races of Vd, the sources of genetic resistance of sunflower depend on the 

circulating races. In Argentina, Galella et al. (2012) reported two QTLs associated to the resistance to 

VArg1 and VArg2 races, but the exact location was not disclosed. On the other hand, using an RNA-
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Seq approach, Guo et al. (2017) described 759 and 511 differentially expressed genes specific to 

resistant and susceptible inbred lines, respectively. Montecchia et al. (2021) approached the 

identification of resistance sources in both a bi-parental population (BMP) and a genome-wide 

association mapping population (AMP). The response to Vd in these populations was characterized 

across nine field trials (FTs) conducted in heavily infested fields of La Pampa and Buenos Aires 

Provinces (Argentina). Clustering analysis based on disease descriptors allowed the recognition of 

four major groups of lines, differing in their response to the pathogen, with trait heritability ranging 

from 35 to 45%. The association mapping (AM) study allowed the identification of 36 genomic 

regions related with SVW resistance distributed over 12 of the 17 chromosomes of the genome of 

sunflower. Validation of three of these regions was achieved by linkage mapping (LM) on the BMP 

(Montecchia 2019). Based on these results, Domínguez et al. (2022) selected parental lines for the 

construction of two multi-parent advanced generation intercrosses (MAGIC) populations. A subset of 

400 of the F2 families of MAGIC2 was phenotyped in infested fields of INTA Balcarce during the 

2020/21 season. The analysis included multispectral images for phenotyping SVW. The results 

obtained allowed the identification of family groups with different responses to SVW and showed the 

potential of this technique for high-throughput phenotyping of fungal diseases in sunflower and the 

implementation of both populations in future fine-mapping studies.  

Phomopsis Stem Canker and Phomopsis Head Rot 

Phomopsis Stem Canker (PSC) of sunflower is a disease first identified in the former Yugoslavia by 

Mihaljcevic et al. (1980). From there it was detected in the main sunflower production regions of the 

world. In some regions, there are also infections in the capitulum, known as Phomopsis Head Rot 

(PHR) (Colombo et al., 2024).   

In endemic regions, PSC results in yield losses of 40% or more (Maširević et al. 2016). In Argentina, 

both healthy and diseased paired plants have shown yield losses of up to 44% in achenes and up to 

22% in fat content (Ghironi et al., 2018). In confectionery sunflower, changes in seed color and size 

have been observed, leading to potential market rejection. However, the quantification of this damage 

in confectionary sunflower remains to be investigated.  

PSC was first reported on sunflower in Argentina by Fálico de Alcaraz et al. (1994) and Ridao (1994). 

Since then, two epidemics were reported in the country in 2002 and in 2015/16 (Corró Molas et al., 

2016a; Huguet, 2006). Currently, the disease is present in all sunflower production regions of 

Argentina.  

The causal agent of the disease was initially identified as Diaporthe helianthi / Phomopsis helianthi 

(Fálico de Alcaraz et al., 1994; Ridao, 1994). Subsequent surveys conducted in the southeast of 

Buenos Aires, based on molecular studies, identified six species: D. helianthi, D. gulyae, D. caulivora, 
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D. sojae, D. kongii, and D. longicolla. The first specie represented 94% of the isolates obtained 

(Zambelli et al., 2021). Colombo and Corró Molas (2022) conducted additional surveys in La Pampa 

and western Buenos Aires. Over 3 years, they determined a prevalence ranging from 67% to 100%. 

They also detected D. ambigua in sunflowers in Argentina for the first time, with symptoms like those 

produced by D. helianthi (Colombo et al. 2023). D. helianthi was also found infecting weeds of the 

Xanthium sp. genus, while D. gulyae was found in Carthamus lanatus, Chenopodium album, among 

others (Thompson et al. 2015; Vrandecic et al. 2010). To date, D. helianthi has also been detected in 

Helianthus petiolaris in Argentina (Cáceres et al. 2007).   

The pathogen primarily overwinters on infected stem debris, producing both pycnidia (anamorph 

state) and perithecia (teleomorph state) on these residues. Also, infected seeds may contribute to 

further spread both locally and internationally (Thompson et al., 2023). Ascospores serve as the 

primary source of infection, enabling the disease to persist from one season to the next. While 

pycnidia and their conidia exist, further research is required to ascertain their biological function. In 

Europe, Delos et al. (2000) developed the ASPHODEL model, while Moschini et al. (2019) developed 

a spore release prediction model based on records from Uruguay. The use of the second model in 

Argentina has enabled the early detection of high-risk areas for ascospore release in regions with 

limited historical disease records (Corró Molas et al. 2021). In the 2022/23 season, the model has also 

been monitored to aid in decision-making for fungicide use by detecting locations with a high risk of 

ascospore release (Corró Molas et al., 2023). 

Disease management is based on the use of cultivars with improved performance, crop rotation, 

balanced fertilization, low planting density, residue burial, changes in planting date and hybrid cycle, 

and the use of fungicides (Debaeke et al., 2003; Maširević et al., 2016). The latter has been recently 

studied by Kashyap et al. (2023) and Dangal et al. (2023) in the United States. In Argentina, ongoing 

studies have yielded variable results, with a greater impact of fungicides observed on symptoms than 

on yield (Corró Molas, personal comm.). On the other hand, the genetic background of the cultivars 

has the most significant impact on disease resistance. European research groups initially took the lead 

in searching for sources of resistance through QTL studies (Bert et al. 2002; Besnard et al. 1997). In 

recent years, with the re-emergence of the pathogen in the USA and Argentina, new efforts towards 

unraveling the genetic basis of resistance have been made, now employing whole-genome approaches. 

To that end, using a recombinant inbred line (RIL) population derived from a cross between HA89 

(susceptible) and HA-R3 (resistant), Talukder et al. (2020) identified a total of 15 quantitative trait loci 

(QTL) associated with PSC resistance, most of them spanning many centimorgan (cM). Additionally, 

Pogoda et al. (2021) identified seven (7) PSC unique QTLs, using a Genome-Wide Association Study 

(GWAS) approach based on a population of 218 accessions preserved at USDA. 
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The complexity of the genetic resistance not only involves numerous genes with infinitesimal 

contributions to the resistance phenotype, but also multiple species of Diaporthe responsible for 

canker in sunflower and different entry points of the fungus (leaf, stem, head), developing a diversity 

of diseases. Including more variables to the pathosystem, Guidini et al. (2023) identified 28 QTLs 

common to two Diaporthe species responsible for PSC: D. Gulyae and D. helianthi. Meanwhile, in 

Argentina numerous studies have been dedicated to characterizing the behavior of hybrids and 

genetically improved lines through natural or semi-natural infections with the additional input of 

infected crop residues (Corró Molas et al., 2016b; Troglia et al., 2022). Using the association mapping 

population from INTA, Filippi et al. (2022) identified 19 unique marker-trait associations for two 

manifestations of Diaporthe/Phomopsis diseases: PSC and PHR. This constitutes the first report on the 

identification of loci associated with different Diaporthe diseases.  

Sclerotinia Head Rot  

S. sclerotiorum is the causal agent of Sclerotinia head rot (SHR), a disease that is widespread in 

sunflower-growing areas around the world. Outbreaks of this disease lead to 10-20% of production 

loss under normal climate but can lead to total production loss under favorable conditions for the 

fungus (Pereyra and Escande, 1994). This organism, a necrotrophic ascomycete, is a serious threat to 

agriculture because it can infect more than 400 plant species, including economically important crops 

like soybean, oilseed rape, tomato, and weeds (Agrios, 2005). Over the past three decades, there has 

been a greater understanding of the behavior of hybrids and growing conditions, notwithstanding this, 

there is no sufficiently effective method for managing the disease. In Argentina, susceptible materials 

represent an average of 23% of the total commercial sunflower hybrids, whereas moderately 

susceptible and superior materials account for 51% and 23% of the evaluated samples in Balcarce 

(Buenos Aires), respectively. The variability observed across different seasons can be partially 

attributed to the genetic advancements achieved over the years. However, the most influential factors 

on disease incidence are primarily linked to predisposing environmental conditions (Moschini and 

Pereyra, 1998). Moschini et al. (2002) investigated the environmental factors associated with S. 

sclerotiorum ascosporic infection and created prediction models to forecast the occurrence of the 

disease. This tool helps identify high-risk locations, which is essential for disease management. This 

issue is especially important considering climate change and meteorological instability. 

Filippi et al. (2017) also considered environmental effects to model several variables related to 

Sclertonia Head Rot (SHR) response in sunflower. The analysis of 137 inbred lines showed a 

significant effect of the inoculation date on disease incidence (DI), disease severity (DS), incubation 

period (IP), and area under the disease progress curve for DI and DS (AUDPCI, AUDPCS). The 

inclusion of the inoculation date effect in the model improved the accuracy of disease level 
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estimations. As expected for complex quantitative characters, moderate to low heritability was 

observed in all cases.   

The genetic basis of SHR resistance is known to be complex, with an infinitesimal contribution from 

multiple loci. Biparental and association mapping studies have been conducted since 2002, leading to 

the identification of multiple Quantitative Trait Loci (QTL). These QTLs typically cover large 

genomic regions, spanning multiple megabases and containing multiple genes (Filippi et al. 2014). 

Using a biparental mapping population derived from a cross between RHA266 (susceptible) and 

PAC2 (partially resistant), Zubrzycki et al. (2017) detected 36 main effect QTLs and 13 epistatic 

QTLs, with a significant enrichment of QTLs in linkage groups (LG) 1, 10 and 15. 

Previous research has demonstrated that sunflower has extensive linkage disequilibrium (LD) (Filippi 

et al., 2020a; Mandel et al., 2013). Consequently, the AM strategy has emerged as the one of the 

preferred approaches in this species for the purpose of identifying genes implicated in quantitative 

resistance mechanisms. Fusari et al. (2012) conducted the first AM study reported for sunflower. 

Using a candidate gene approach on a population of 95 inbred lines from the INTA breeding program, 

these authors identified a gene associated with reduced SHR incidence (HaRhoBP). Based on a 

population of 135 inbred lines from INTA and a more extensive genotyping strategy using SNP panels 

and five phenotypic descriptors (i.e., DI, DS, IP, AUDPCI, and AUDPCS), Filippi et al. (2020b) found 

13 polymorphisms associated with SHR resistance.   

The availability of a sunflower reference genome (Badouin et al. 2017), along with the advancement 

of sequencing-based genotyping strategies, such as genotyping by sequencing or whole-genome 

resequencing, allowed association studies on molecular markers across the sunflower genome. In the 

same GWAS conducted for Diaporthe/Phomopsis, Pogoda et al. (2021) found 14 QTL related with 

SHR. Additionally, Filippi et al. (2022) discovered 24 SHR markers based on GWAS on the INTA 

AM population.   

In addition, while no correlation has been reported between the response to different manifestations of 

Sclerotinia in sunflower (i.e., SHR and basal stem rot, BSR), independent AM studies have identified 

common genes (e.g., Filippi et al. 2020b; Talukder et al. 2014), paving the way for future integrated 

analyses of defense patterns in relation to both diseases.  

 Finally, different studies have also shown a mild correlation between the response to PHC and PSC in 

pre-breeding materials (Bert et al. 2002; Filippi et al. 2022; Pogoda et al. 2021; Talukder et al. 2020), 

suggesting a generalized defense mechanism against these necrotrophic pathogens. However, the 

search for regions simultaneously associated with both pathogens has not been conclusive, with only 

one marker found in combination, explaining a low percentage of resistance (Pogoda et al., 2021), or 

some markers showing epistatic association (Filippi et al., 2022).  
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The exploration of regions physically close to the associated markers has identified R genes belonging 

to the group of pattern recognition receptors (PPRs). These are proteins that recognize pathogen-

associated molecules (PAMPs), of the "receptor-like kinase" class. A detailed analysis of these genes 

may help unravel the underlying mechanism of resistance to both pathogens in sunflower (Filippi et 

al., 2022). 

As an alternative approach to characterizing the sunflower-S.sclerotiorum pathosystem, Fass et al. 

(2020) performed transcriptome profiling in three sunflower lines with different behavior against the 

fungus in early infection stages. The lines showed limited overlap in differentially expressed genes 

(DEGs) and functionally enriched categories, indicating a genotype-specific defense structure. 

However, a common feature of the three lines was the overrepresentation of lncRNAs. In addition, 

five DEGs were colocalized with QTL regions previously associated with SHR resistance (Filippi et 

al., 2020; Zubrzycki et al., 2017), further supporting their contribution to defense mechanisms.  

Functional validation steps are required for the integration of QTLs or genes into breeding programs. 

The survey of mutants using effective genotyping techniques presents novel opportunities for 

confirming candidate genes and unraveling the biological mechanisms associated with resistance to 

SHR. Following a reverse genetics strategy, Fass et al. (2018) developed mutagenized sunflower 

populations and searched for candidate gene mutants by using CEL1 heteroduplex analysis (Fusari et 

al., 2010) and microfluidics-based multiplex PCR sequencing. Two of the identified mutants were 

tested in the field in an artificial inoculation experiment. Increased resistance to SHR was found in 

plants carrying a mutant allele of the candidate gene HA18494, a mitochondrial calcium uptake protein 

that was differentially expressed in early stages of infection (Fass et al., 2018).  

Oomycete diseases 

Sunflower downy mildew  

Downy mildew (DM), caused by the oomycete P. halstedii (Farl.) Berl. & de Toni (Hall 1989), is a 

yield limiting disease occurring in most of the sunflower growing areas in the world (Spring and 

Otmar, 2019). The pathogen can infect over 80 species of Asteraceae, including cultivated, 

ornamental, and wild sunflowers (Gascuel et al. 2015). It is an obligate biotroph that can only survive 

and reproduce on a living host. It is a polycyclic organism, which produces many infection cycles 

during a growing season, as a combination of asexual and sexual reproduction events. The primary 

infection (zoospores from sporangia) produces the typical symptoms of DM: dwarfism, chlorotic 

mosaic around the leaf veins, sporulation in the underside of the leaves and leaf curling. At the end of 

the growing season, horizontal sunflower receptacles with vain, absent, or small achenes are observed. 

As a soil-borne disease, symptoms are observed as patches in the field (Figure 1).  
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DM in Argentina has been increasingly reported along the sunflower growing area where the main 

affected regions are in the South-East of Buenos Aires province, with prevalent cool and humid 

weather, and in the North of Santa Fe province, where early sowing dates may cause favorable low-

temperature conditions for oospore germination. Martínez et al. (2021a) studied the presence of spores 

in seeds from asymptomatic (healthy) sunflowers near DM patches of Buenos Aires province through 

a molecular diagnosis based on the amplification of effector gene sequences of P. halstedii. They 

found that normal-sized seeds can be asymptomatic carriers of the pathogen, which represents a higher 

risk for disease spreading when the destination of the crop is hybrid seed production or when infected 

seeds contaminate field machinery or transport. The detection threshold was established in 0.1 

picograms of infected seed DNA per microliter. This simple PCR- based method for P. halstedii 

detection is useful for growers and nurseries to determine the presence of the pathogen in seeds when 

symptoms are undetectable. 

Martínez et al. (2019) established a methodology for studying and monitoring DM from distant 

collection sites. It includes in situ inoculation, fast desiccation of infected plant leaves using silica gel 

bags and a chemical treatment to remove fungicide from sunflower seeds. This approach facilitates the 

transportation and preservation of plant tissues, ensuring high-quality genomic DNA for molecular 

analysis and enabling further fungicide experiments on DM. 

Since the first report of P. halstedii in USA a century ago, the pathogen has evolved in several 

countries where sunflower is cultivated. Molecular variability can be combined with race 

determination to interpret the processes of introduction and evolution in each region (Bán et al. 2021). 

Martínez et al. (2021b) and Martínez (personal comm.) performed a population study on P. halstedii 

isolates collected from the main sunflower growing regions of Argentina between 1997 and 2018 and 

included genetic data of P. halstedii from other countries retrieved from public databases. They used 

EST markers (Delmotte et al., 2008; Giresse et al., 2007), SSR (Rivera et al., 2016) and effector-based 

markers (Gascuel et al., 2016) to obtain diversity indexes and perform clustering analysis (Kitner et al. 

2023). The expected heterozygosity values corresponded with a homothallic mode of reproduction, 

and the Argentinian population of P. halstedii was genetically different from populations from other 

countries. Moreover, the year of collection of the isolates was the most significant factor influencing 

the genetic variability levels of the pathogen. 

Wild sunflowers of genus Helianthus have been the main source of genetic resistance for sunflower 

breeding programs worldwide (Qi et al., 2023). In Argentina, six populations of wild H. annuus of 

Buenos Aires, La Pampa, Entre Ríos, Mendoza and Córdoba provinces were screened for DM 

resistance against a local strain of the pathogen with promising results (Martínez et al., 2024). The 

study included phenotypic and histological aspects and the development of a novel disease scale and 

index for wild sunflower germplasm evaluations.  
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The evolution of P. halstedii in each region is highly influenced by management practices, where 

sunflower genetics and applied fungicides are most important. The disease can be efficiently 

controlled by vertical genes named Pl, that confer resistance to a limited number of races of P. 

halstedii. More than 20 Pl genes have been described and incorporated in sunflower breeding 

programs worldwide (Pecrix et al., 2018; Qi et al., 2019). However, the host-pathogen interaction 

influenced by the continuous use of a reduced number of Pl genes in a territory, can lead to the 

overcoming of these genes with consequent disease outbreaks by the emergence of novel races. At 

least 45 races of the pathogen were determined worldwide (Iwebor et al., 2018). This gene-

overcoming process has been documented in many countries as France (Delmotte et al. 2012), United 

States (Gilley et al., 2016), Czech Republic (Drábková Trojanová et al., 2018), among others. In 

Argentina, the use of Pl genes is limited, and several disease outbreaks attributed to the breakdown of 

Pl genes and the development of fungicide tolerances were documented (Bazzalo et al. 2016; 

Erreguerena et al., 2013; Marcellán et al., 2008; Pereyra and Escande, 2002). The race spectrum of 

Argentina is believed to be small and stable, being the predominant races 300, 330, 710, 730 and 770 

(Harveson et al., 2016). Nevertheless, several outbreaks in sunflower fields sown with resistant 

hybrids occurred in different regions, indicating the overcoming of a widely used Pl resistance gene in 

the country (Huguet, personal comm.). Through a multidisciplinary effort of the INTA, universities, 

seed companies, the Argentinian Sunflower Association (ASAGIR), and private pathologists, the 

current race spectrum of P. halstedii in Argentina was recently characterized from 1994 to 2022 

(Martínez, personal comm.). Over ten races were found (Martínez et al., 2022), demonstrating the 

breakdown of three Pl genes. In the same context, studies on P. halstedii isolates from Buenos Aires, 

Santa Fe and Chaco provinces were tested for sensitivity to the main used oomyceticides (seed-coated) 

for DM control, metalaxyl-m (MX) and oxathiapiprolin (OXA). Results showed a significant increase 

in the development of resistance/tolerance to MX and established OXA as an efficient alternative to 

prevent primary infections (Cohen et al., 2019; Bannister et al., 2020; Di Giano et al., 2020; 

Erreguerena, personal comm.). An integrated disease management program of sunflower crop in 

Argentina should include the use of resistant hybrids, the systematic monitoring of races and 

oomyceticide resistant strains, the avoidance of early sowing dates, a molecular seed testing (Martínez 

et al., 2021a), the use of multisite fungicides and/or bio-fungicides (Trichoderma based) (Faberi et al., 

2020) and the incorporation of Pl genes in sunflower breeding according to the race spectrum in the 

country. The combination of these management practices/strategies is crucial to reduce DM impact on 

maintaining the effectiveness of resistance genes and oomiceticides/fungicides over an extended 

period towards crop sustainability. 
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Figure 1. Strategies applied in INTA/Argentina to limit the losses caused by the four main sunflower 

diseases: Epidemiological surveillance, Characterization of pathogens, Genetic resources used to 

evaluate and find sources of resistance, Phenotypic characterization of genetic resources, Development 

of complementary practices to genetic resistance. 

 
CONCLUSIONS 

In recent years, crop production stability has been threatened by increasing occurrence of plant 

diseases. This phenomenon can be attributed to factors such as monocultures and extensive trade in 

plants, as well as weather instabilities that lead to the emergence of new strains and changes in the 

virulence of pathogens (Corredor-Moreno and Saunders, 2020; Singh et al., 2023). This fact and the 

demand for sustainable crop production and environmentally friendly crop protection have led to the 

development of various approaches to better understand plant pathosystems holistically (Demirjian et 

al., 2023).  

In this article we present a comprehensive overview of the investigations conducted on the resistance 

of sunflower to diseases and the more prevalent pathogens affecting the crop (Figure 1). It is 

noteworthy that there is a limited overlap in the genomic regions associated with disease resistance 

across different research groups globally. This fact is poorly explained by the genetic differentiation 

among the circulating germplasm of cultivated sunflower since it was reported to be low (Filippi et al., 

2020a). The diverse genotyping panels or strategies used to characterize the genome do not contribute 

to clarify this diversity either, considering that the genomic positions of the analyzed regions are solely 

based on the two reference genomes available for this specific species (Badouin et al., 2017). A 

significant finding from the work reviewed here is the substantial variability reported among pathogen 

populations in different sunflower-growing regions. Considering recent research on other 
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pathosystems, this observation partially explains the absence of shared QTL in the studies. Briefly, a 

study of the Arabidopsis thaliana-Xanthomonas arboricola pathosystem using joint association 

analysis (co-GWAS) revealed specific strain resistance QTLs with strong allelic effects and generalist 

resistance QTLs with minor allelic effects. This study revealed that a greater proportion of the 

variation in quantitative disease resistance was due to genetic diversity among strains of X. arboricola 

than to the polygenic effects of A. thaliana (Wang et al., 2018). Other published works on plant and 

animal pathosystems confirm this hypothesis (Hassan et al., 2020; Zhang et al., 2021). This 

emphasizes the importance of finding QTLs linked to inherent variability in pathogenicity. 

Simultaneously, alternative methodologies based on building and analyzing gene expression networks, 

as described by Ribone et al. (2023), contribute to the establishment of a comprehensive perspective 

on the plant's response to stressors. Finally, to obtain a comprehensive representation of the interaction 

between host and pathogen, it becomes crucial to study the microbiota and the pathobiota (Teixeira et 

al., 2019; Vannier et al., 2019), along with the interaction with environmental stressors.  
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